LIRIS
Abstract:The generalization capabilities of robotic manipulation policies are heavily influenced by the choice of visual representations. Existing approaches typically rely on representations extracted from pre-trained encoders, using two dominant types of features: global features, which summarize an entire image via a single pooled vector, and dense features, which preserve a patch-wise embedding from the final encoder layer. While widely used, both feature types mix task-relevant and irrelevant information, leading to poor generalization under distribution shifts, such as changes in lighting, textures, or the presence of distractors. In this work, we explore an intermediate structured alternative: Slot-Based Object-Centric Representations (SBOCR), which group dense features into a finite set of object-like entities. This representation permits to naturally reduce the noise provided to the robotic manipulation policy while keeping enough information to efficiently perform the task. We benchmark a range of global and dense representations against intermediate slot-based representations, across a suite of simulated and real-world manipulation tasks ranging from simple to complex. We evaluate their generalization under diverse visual conditions, including changes in lighting, texture, and the presence of distractors. Our findings reveal that SBOCR-based policies outperform dense and global representation-based policies in generalization settings, even without task-specific pretraining. These insights suggest that SBOCR is a promising direction for designing visual systems that generalize effectively in dynamic, real-world robotic environments.
Abstract:Visual foundation models provide strong perceptual features for robotics, but their dense representations lack explicit object-level structure, limiting robustness and contractility in manipulation tasks. We propose STORM (Slot-based Task-aware Object-centric Representation for robotic Manipulation), a lightweight object-centric adaptation module that augments frozen visual foundation models with a small set of semantic-aware slots for robotic manipulation. Rather than retraining large backbones, STORM employs a multi-phase training strategy: object-centric slots are first stabilized through visual--semantic pretraining using language embeddings, then jointly adapted with a downstream manipulation policy. This staged learning prevents degenerate slot formation and preserves semantic consistency while aligning perception with task objectives. Experiments on object discovery benchmarks and simulated manipulation tasks show that STORM improves generalization to visual distractors, and control performance compared to directly using frozen foundation model features or training object-centric representations end-to-end. Our results highlight multi-phase adaptation as an efficient mechanism for transforming generic foundation model features into task-aware object-centric representations for robotic control.
Abstract:Accurate single-object tracking and short-term motion forecasting remain challenging under occlusion, scale variation, and temporal drift, which disrupt the temporal coherence required for real-time perception. We introduce \textbf{SOTFormer}, a minimal constant-memory temporal transformer that unifies object detection, tracking, and short-horizon trajectory prediction within a single end-to-end framework. Unlike prior models with recurrent or stacked temporal encoders, SOTFormer achieves stable identity propagation through a ground-truth-primed memory and a burn-in anchor loss that explicitly stabilizes initialization. A single lightweight temporal-attention layer refines embeddings across frames, enabling real-time inference with fixed GPU memory. On the Mini-LaSOT (20%) benchmark, SOTFormer attains 76.3 AUC and 53.7 FPS (AMP, 4.3 GB VRAM), outperforming transformer baselines such as TrackFormer and MOTRv2 under fast motion, scale change, and occlusion.




Abstract:Embodied visual navigation remains a challenging task, as agents must explore unknown environments with limited knowledge. Existing zero-shot studies have shown that incorporating memory mechanisms to support goal-directed behavior can improve long-horizon planning performance. However, they overlook visual frontier boundaries, which fundamentally dictate future trajectories and observations, and fall short of inferring the relationship between partial visual observations and navigation goals. In this paper, we propose Semantic Cognition Over Potential-based Exploration (SCOPE), a zero-shot framework that explicitly leverages frontier information to drive potential-based exploration, enabling more informed and goal-relevant decisions. SCOPE estimates exploration potential with a Vision-Language Model and organizes it into a spatio-temporal potential graph, capturing boundary dynamics to support long-horizon planning. In addition, SCOPE incorporates a self-reconsideration mechanism that revisits and refines prior decisions, enhancing reliability and reducing overconfident errors. Experimental results on two diverse embodied navigation tasks show that SCOPE outperforms state-of-the-art baselines by 4.6\% in accuracy. Further analysis demonstrates that its core components lead to improved calibration, stronger generalization, and higher decision quality.




Abstract:Robotic Manipulation (RM) is central to the advancement of autonomous robots, enabling them to interact with and manipulate objects in real-world environments. This survey focuses on RM methodologies that leverage imitation learning, a powerful technique that allows robots to learn complex manipulation skills by mimicking human demonstrations. We identify and analyze the most influential studies in this domain, selected based on community impact and intrinsic quality. For each paper, we provide a structured summary, covering the research purpose, technical implementation, hierarchical classification, input formats, key priors, strengths and limitations, and citation metrics. Additionally, we trace the chronological development of imitation learning techniques within RM policy (RMP), offering a timeline of key technological advancements. Where available, we report benchmark results and perform quantitative evaluations to compare existing methods. By synthesizing these insights, this review provides a comprehensive resource for researchers and practitioners, highlighting both the state of the art and the challenges that lie ahead in the field of robotic manipulation through imitation learning.
Abstract:Diffusion policies have recently emerged as a powerful class of visuomotor controllers for robot manipulation, offering stable training and expressive multi-modal action modeling. However, existing approaches typically treat action generation as an unconstrained denoising process, ignoring valuable a priori knowledge about geometry and control structure. In this work, we propose the Adaptive Diffusion Policy (ADP), a test-time adaptation method that introduces two key inductive biases into the diffusion. First, we embed a geometric manifold constraint that aligns denoising updates with task-relevant subspaces, leveraging the fact that the relative pose between the end-effector and target scene provides a natural gradient direction, and guiding denoising along the geodesic path of the manipulation manifold. Then, to reduce unnecessary exploration and accelerate convergence, we propose an analytically guided initialization: rather than sampling from an uninformative prior, we compute a rough registration between the gripper and target scenes to propose a structured initial noisy action. ADP is compatible with pre-trained diffusion policies and requires no retraining, enabling test-time adaptation that tailors the policy to specific tasks, thereby enhancing generalization across novel tasks and environments. Experiments on RLBench, CALVIN, and real-world dataset show that ADPro, an implementation of ADP, improves success rates, generalization, and sampling efficiency, achieving up to 25% faster execution and 9% points over strong diffusion baselines.
Abstract:This study provides a detailed analysis of current advancements in dynamic object tracking (DOT) and trajectory prediction (TP) methodologies, including their applications and challenges. It covers various approaches, such as feature-based, segmentation-based, estimation-based, and learning-based methods, evaluating their effectiveness, deployment, and limitations in real-world scenarios. The study highlights the significant impact of these technologies in automotive and autonomous vehicles, surveillance and security, healthcare, and industrial automation, contributing to safety and efficiency. Despite the progress, challenges such as improved generalization, computational efficiency, reduced data dependency, and ethical considerations still exist. The study suggests future research directions to address these challenges, emphasizing the importance of multimodal data integration, semantic information fusion, and developing context-aware systems, along with ethical and privacy-preserving frameworks.




Abstract:Object-centric representation (OCR) has recently become a subject of interest in the computer vision community for learning a structured representation of images and videos. It has been several times presented as a potential way to improve data-efficiency and generalization capabilities to learn an agent on downstream tasks. However, most existing work only evaluates such models on scene decomposition, without any notion of reasoning over the learned representation. Robotic manipulation tasks generally involve multi-object environments with potential inter-object interaction. We thus argue that they are a very interesting playground to really evaluate the potential of existing object-centric work. To do so, we create several robotic manipulation tasks in simulated environments involving multiple objects (several distractors, the robot, etc.) and a high-level of randomization (object positions, colors, shapes, background, initial positions, etc.). We then evaluate one classical object-centric method across several generalization scenarios and compare its results against several state-of-the-art hollistic representations. Our results exhibit that existing methods are prone to failure in difficult scenarios involving complex scene structures, whereas object-centric methods help overcome these challenges.
Abstract:Visual representations are central to the learning and generalization capabilities of robotic manipulation policies. While existing methods rely on global or dense features, such representations often entangle task-relevant and irrelevant scene information, limiting robustness under distribution shifts. In this work, we investigate object-centric representations (OCR) as a structured alternative that segments visual input into a finished set of entities, introducing inductive biases that align more naturally with manipulation tasks. We benchmark a range of visual encoders-object-centric, global and dense methods-across a suite of simulated and real-world manipulation tasks ranging from simple to complex, and evaluate their generalization under diverse visual conditions including changes in lighting, texture, and the presence of distractors. Our findings reveal that OCR-based policies outperform dense and global representations in generalization settings, even without task-specific pretraining. These insights suggest that OCR is a promising direction for designing visual systems that generalize effectively in dynamic, real-world robotic environments.
Abstract:Pseudo-labeling is a cornerstone of Unsupervised Domain Adaptation (UDA), yet the scarcity of High-Confidence Pseudo-Labeled Target Domain Samples (\textbf{hcpl-tds}) often leads to inaccurate cross-domain statistical alignment, causing DA failures. To address this challenge, we propose \textbf{N}oise \textbf{O}ptimized \textbf{C}onditional \textbf{D}iffusion for \textbf{D}omain \textbf{A}daptation (\textbf{NOCDDA}), which seamlessly integrates the generative capabilities of conditional diffusion models with the decision-making requirements of DA to achieve task-coupled optimization for efficient adaptation. For robust cross-domain consistency, we modify the DA classifier to align with the conditional diffusion classifier within a unified optimization framework, enabling forward training on noise-varying cross-domain samples. Furthermore, we argue that the conventional \( \mathcal{N}(\mathbf{0}, \mathbf{I}) \) initialization in diffusion models often generates class-confused hcpl-tds, compromising discriminative DA. To resolve this, we introduce a class-aware noise optimization strategy that refines sampling regions for reverse class-specific hcpl-tds generation, effectively enhancing cross-domain alignment. Extensive experiments across 5 benchmark datasets and 29 DA tasks demonstrate significant performance gains of \textbf{NOCDDA} over 31 state-of-the-art methods, validating its robustness and effectiveness.